

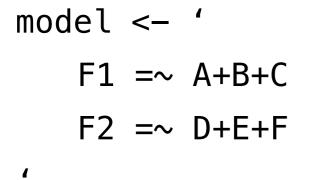
CFA - practice Confirmatory Factor Analysis in R

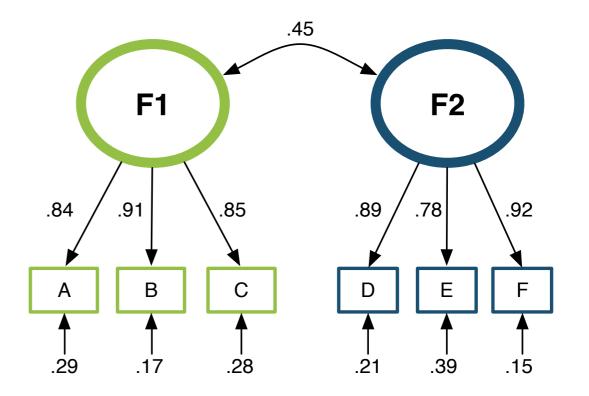
Today's goal: Teach how to do Confirmatory Factor Analysis in R.

Outline:

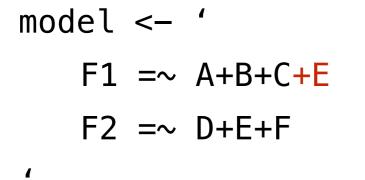
– Example

twq.dat, variables:

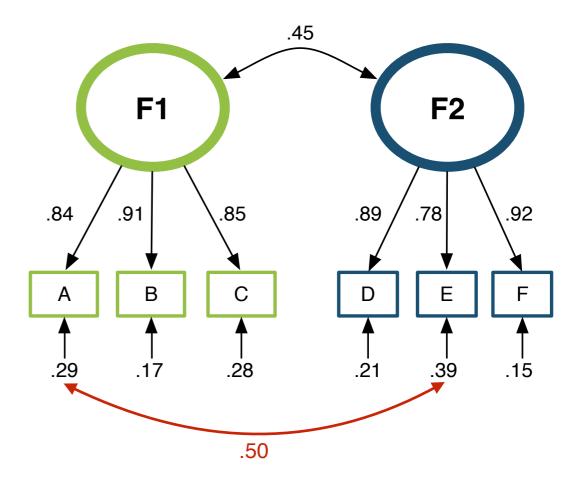

- cgraph: inspectability (0: list, 1: graph)
- citem-cfriend: control (baseline: no control)
- cig (citem * cgraph) and cfg (cfriend * cgraph)
- s1-s7: satisfaction with the system
- q1-q6: perceived recommendation quality
- c1-c5: perceived control
- u1-u5: understandability

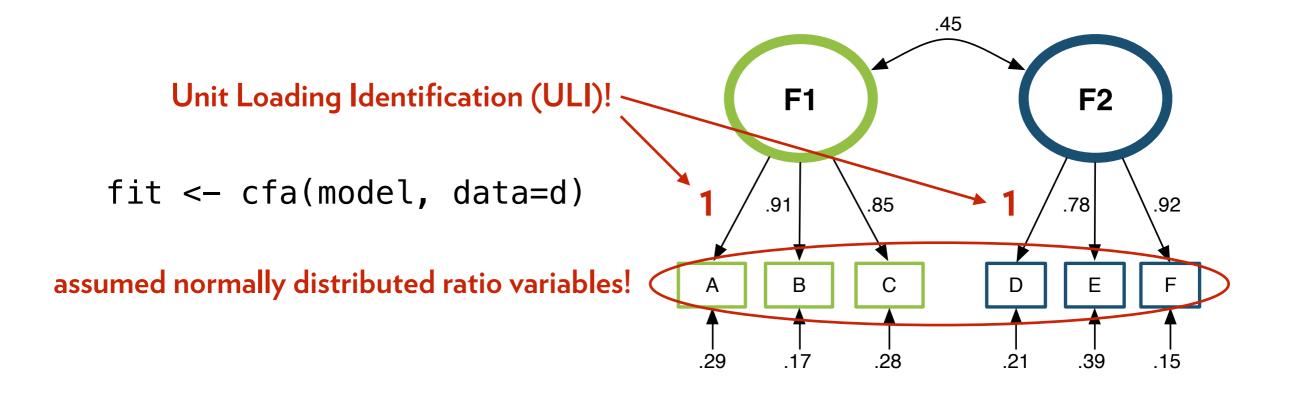


twq.dat, variables:

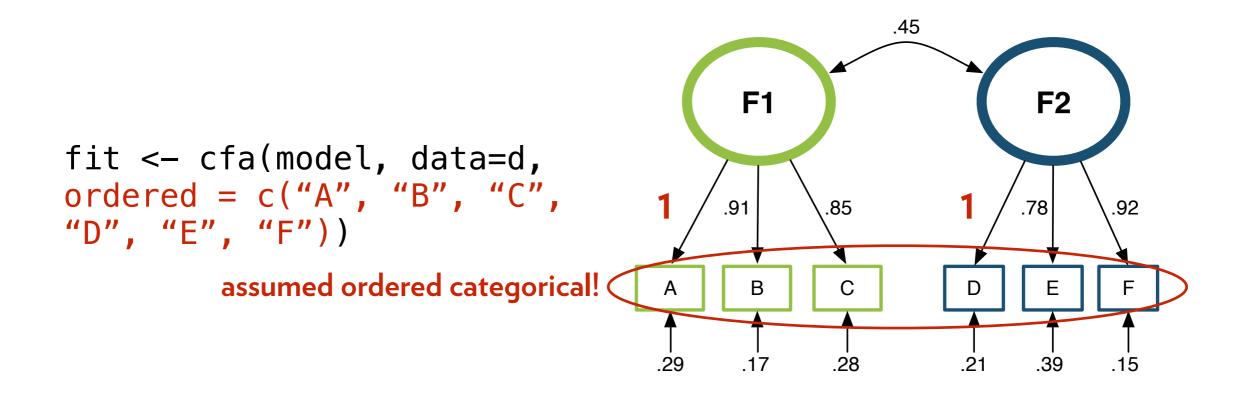

- e1-e4: user music expertise
- t1-t6: propensity to trust
- f1-f6: familiarity with recommenders
- average rating of, and number of known items in, the top
 10
- time taken to inspect the recommendations

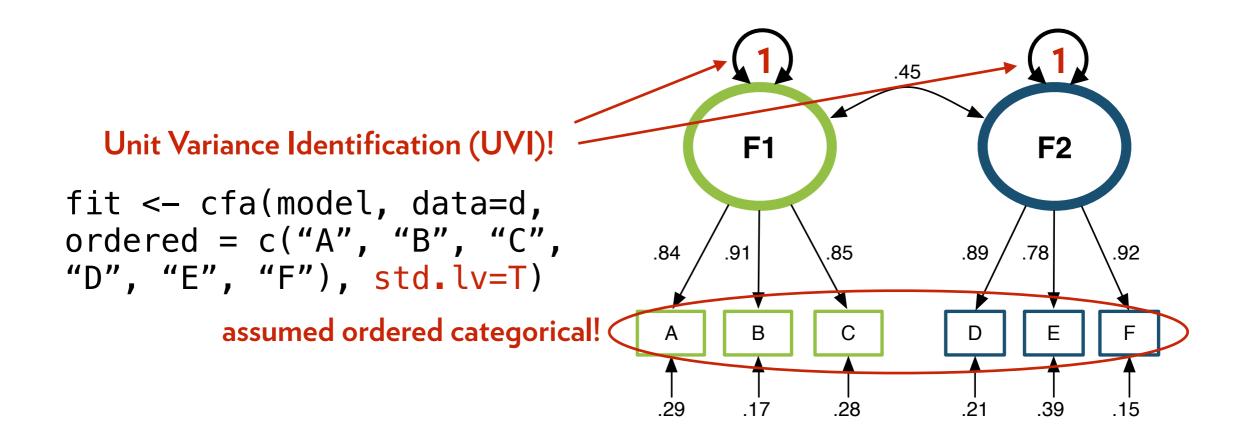






model <- '
F1 =~ A+B+C
F2 =~ D+E+F
A ~~ E</pre>


1



summary(fit, rsquare=T, fit.measures=T)

"rsquare" gives us 1-uniqueness values

"fit.measures" gives us CFI, TLI, and RMSEA

Write model definition:

model <- 'satisf =~ s1+s2+s3+s4+s5+s6+s7
quality =~ q1+q2+q3+q4+q5+q6
control =~ c1+c2+c3+c4+c5
underst =~ u1+u2+u3+u4+u5'</pre>

Run cfa (load package lavaan):

fit <- cfa(model, data=twq, ordered=names(twq), std.lv=TRUE)</pre>

Inspect model output:

```
summary(fit, rsquare=TRUE, fit.measures=TRUE)
```


Output (model fit): lavaan (0.5–17) converged normally afte	r 39 iterations	
Number of observations	267	
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor Shift parameter for simple second-order correction	DWLS 251.716 224 0.098 (Mplus variant)	Robust 365.719 224 0.000 1.012 117.109
Model test baseline model:		
Minimum Function Test Statistic Degrees of freedom P-value	48940.029 253 0.000	14801.250 253 0.000

Note: we do not really care about this yet (we should optimize our model first)

Output (model fit, continued):

User model versus baseline model:

Comparative Fit Index (CFI) Tucker–Lewis Index (TLI)		0.999 0.999	0.990 0.989	
Root Mean Square Error of Approximation:				
RMSEA 90 Percent Confidence Interval P–value RMSEA <= 0.05	0.000	0.022 0.034 1.000	0.049 0.040 0.579	0.058
Weighted Root Mean Square Residual:				
WRMR		0.855	0.855	
Parameter estimates:				
Information Standard Errors		pected st.sem		

Run the CFA

Output (loadings):

Estimate	Std.err	Z-value	P(> z)
0.888	0.018	49.590	0.000
-0.885	0.018	-48.737	0.000
0.771	0.029	26.954	0.000
0.821	0.025	32.363	0.000
0.889	0.018	50.566	0.000
0.788	0.031	25.358	0.000
-0.845	0.022	-38.245	0.000
0.950	0.013	72.421	0.000
0.949	0.013	72.948	0.000
0.942	0.012	77.547	0.000
0.805	0.033	24.257	0.000
-0.699	0.042	-16.684	0.000
-0.774	0.040	-19.373	0.000
	0.888 -0.885 0.771 0.821 0.889 0.788 -0.845 0.950 0.949 0.949 0.942 0.805 -0.699	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

These are the loadings (the regression bs on the arrows going from the factor to the item) They should be > 0.70 (because R² = loading² should be > 0.5) Negative loadings are for negative items (please check!!)

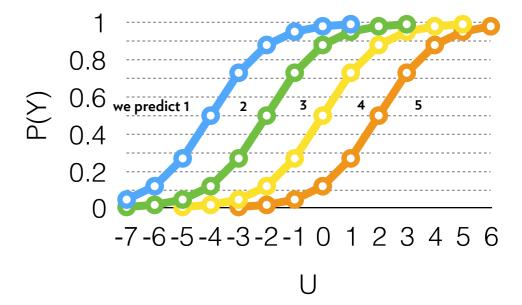
Output (loadings, continued):

control =~				
c1	0.712	0.038	18.684	0.000
c2	0.855	0.024	35.624	0.000
c3	0.905	0.022	41.698	0.000
c4	0.723	0.037	19.314	0.000
c5	-0.424	0.056	-7.571	0.000
underst =~				
u1	-0.557	0.047	-11.785	0.000
u2	0.899	0.016	57.857	0.000
u3	0.737	0.030	24.753	0.000
u4	-0.918	0.016	-58.229	0.000
u5	0.984	0.010	97.787	0.000

Output (factor correlations):

Covariances: satisf ~~				
quality	0.686	0.033	20.503	0.000
control	-0.760	0.028	-26.913	0.000
underst	0.353	0.048	7.320	0.000
quality ~~				
control	-0.648	0.040	-16.041	0.000
underst	0.278	0.058	4.752	0.000
control ~~				
underst	-0.382	0.051	-7.486	0.000

These are the factor correlations (the numbers on the arrows going from one factor to another) They should not be too high (more about this later) Note: the control factor turns out to be "lack of control" (that happens sometimes)



Run the CFA

Output (thresholds):

Thresholds:

Cont					
s1	t1	-1.829	0.148	-12.382	0.000
s1	t2	-1.021	0.093	-10.941	0.000
s1	t3	-0.441	0.080	-5.539	0.000
s1	t4	0.874	0.089	9.874	0.000
s2	t1	-0.330	0.078	-4.207	0.000
s2	t2	0.732	0.085	8.626	0.000
s2	t3	1.157	0.099	11.712	0.000
s2	t4	2.005	0.170	11.790	0.000
s3	t1	-1.737	0.138	-12.581	0.000
s3	t2	-0.834	0.087	-9.540	0.000
s3	t3	-0.222	0.078	-2.869	0.004
s3	t4	1.176	0.100	11.800	0.000
s4	t1	-1.696	0.134	-12.642	0.000
s4	t2	-0.732	0.085	-8.626	0.000
s4	t3	-0.014	0.077	-0.183	0.855
s4	t4	1.037	0.094	11.043	0.000
s5	t1	-1.622	0.128	-12.710	0.000
s5	t2	-0.769	0.086	-8.972	0.000
s5	t3	-0.118	0.077	-1.527	0.127
s5	t4	1.087	0.096	11.339	0.000
s6	t1	-1.737	0.138	-12.581	0.000
s6	t2	-0.902	0.089	-10.094	0.000
s6	t3	0.441	0.080	5.539	0.000
• • •			•••		• • •

These are the thresholds for the ordered categorical variables

Output (variances):

- •	•
Variances:	
s1	0.212
s2	0.218
s3	0.406
s4	0.326
s5	0.210
s6	0.379
s7	0.286
q1	0.097
q2	0.099
q3	0.112
q4	0.352
q5	0.511
q6	0.401
c1	0.494
c2	0.269
c3	0.180
c4	0.478
c5	0.821
u1	0.690
u2	0.192
u3	0.456
u4	0.157
u5	0.032
satisf	1.000
quality	1.000
control	1.000
underst	1.000
	T 1.

The variances of the items (observed) The variances of the factors (fixed to 1, using UVI)

Output (r-square):

R-Square:

s1	0.788
s2	0.782
-	
s3	0.594
s4	0.674
s5	0.790
s6	0.621
s7	0.714
	•••=
q1	0.903
q2	0.901
q3	0.888
q4	0.648
q5	0.489
q6	0.599
c1	0.506
c2	0.731
c3	0.820
c4	0.522
c5	0.179
u1	0.310
u2	0.808
u3	0.544
u4	0.843
u5	0,968
uS	0 . 906

Also called "variance extracted" or "communality"... it is 1 – uniqueness Should be > 0.50 (or at the very least > 0.40)

Remove items with low communality

check for r-square < 0.40 (or maybe 0.50)

Remove items with high cross-loadings or residual correlations

check the modification indices

Keep at least three items

if necessary, specify a model with cross-loadings or residual correlations... but try to avoid this!

Based on r-square, iteratively remove items:

High residuals

High residual correlations:

- The observed correlation between two items is significantly higher (or lower) than predicted
- Might mean that factors should be split up

High cross-loadings:

- When the model suggest that the model fits significantly better if an item also loads on an additional factor
- Could mean that an item actually measures two things

In R: modification indices

Modification indices give an **estimate** on how each possible adjustment of the model may improve it

Listed are:

mi: the modification index (a chi-square value with 1 df) epc: the expected value of the parameter if added to the model

Get the modification indices

```
mods <- modindices(fit, power=TRUE)</pre>
```

Only keep the ones that are significant and large enough to be interesting

```
mods <- mods[grep("\\*", mods$decision),]</pre>
```

Display

mods

High residuals

Look for items involved in several modifications that have a high mi (most important), high epc (less important), or both

Remove the most troublesome one from the model

- In this case: u3
- Loads on satisfaction and quality, correlates with c1 and s6

Recalculate the modification indices

(etc.)

For all these metrics:

- Remove items that do not meet the criteria, but be careful to keep at least 3 items per factor
- One may remove an item that has values much worse than other items, even if it meets the criteria

(Because of this, I'm going to stop here)

(note: there could be something going on with satisfaction; let's explore later...)

Inspect the following things in the final model: Item-fit (this should be good by now) Factor-fit: Average Variance Extracted Model-fit: Chi-square test, CFI, TLI, RMSEA

Output (loadings): Latent variables:

Latent variables:				
satisf =∼				
s1	0.888	0.018	50.049	0.000
s2	-0.885	0.018	-49.187	0.000
s3	0.769	0.029	26.847	0.000
s4	0.822	0.025	32.660	0.000
s5	0.889	0.017	51.012	0.000
s6	0.786	0.031	25.139	0.000
s7	-0.845	0.022	-38.547	0.000
quality =~				
q1	0.950	0.013	72.301	0.000
q2	0.950	0.013	73.136	0.000
q3	0.942	0.012	77.787	0.000
q4	0.804	0.033	24.346	0.000
q5	-0.698	0.042	-16.693	0.000
q6	-0.775	0.040	-19.510	0.000
control =~				
c1	0.700	0.039	17.958	0.000
c2	0.859	0.024	36.386	0.000
c3	0.911	0.022	41.986	0.000
c4	0.717	0.038	18.773	0.000
underst =~				
u2	0.910	0.014	63.720	0.000
u4	-0.922	0.016	-58.796	0.000
u5	0.984	0.010	93.772	0.000

All remaining loadings > 0.70

Output (factor correlations):

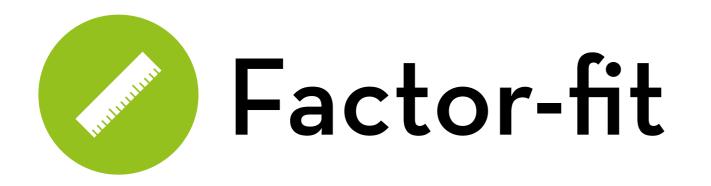
Covariances:				
satisf ~~				
quality	0.687	0.033	20.507	0.000
control	-0.762	0.029	-26.711	0.000
underst	0.315	0.052	6.105	0.000
quality ~~				
control	-0.646	0.041	-15.718	0.000
underst	0.263	0.059	4.494	0.000
control ~~				
underst	-0.328	0.058	-5.681	0.000

Output (r-square):

R-Square:

s1	0.788
s2	0.783
s3	0.592
s4	0.675
s5	0.791
s6	0.617
s7	0.714
q1	0.902
q2	0.902
q3	0.887
q4	0.646
q5	0.487
q6	0.601
c1	0.490
c2	0.738
c3	0.830
c4	0.514
u2	0.828
u4	0.849
u5	0.968
	01000

A few are < 0.50, but all are > 0.48, so this is quite okay


Average Variance Extracted (AVE) In Iavaan output: average of R-squared per factor

Convergent validity:

AVE > 0.5

Discriminant validity

 $\sqrt{(\text{AVE})}$ > largest correlation with other factors

Satisfaction:

AVE = 0.709, $\sqrt{(AVE)}$ = 0.842, largest correlation = 0.762

Quality:

AVE = 0.737, $\sqrt{(AVE)}$ = 0.859, largest correlation = 0.687

Control:

AVE = 0.643, $\sqrt{(AVE)}$ = 0.802, largest correlation = 0.762

Understandability:

AVE = 0.874, $\sqrt{(AVE)}$ = 0.935, largest correlation = 0.341

Chi-square test of model fit:

- Tests whether there any significant misfit between estimated and observed correlation matrix
- Often this is true (p < .05)... models are rarely perfect!
- Alternative metric: chi-squared / df < 3 (good fit) or < 2 (great fit)

CFI and TLI:

- Relative improvement over baseline model; ranging from 0.00 to 1.00
- CFI should be > 0.96 and TLI should be > 0.95

RMSEA:

- Root mean square error of approximation
- Overall measure of misfit
- Should be < 0.05, and its confidence interval should not exceed 0.10.

Model-fit metrics

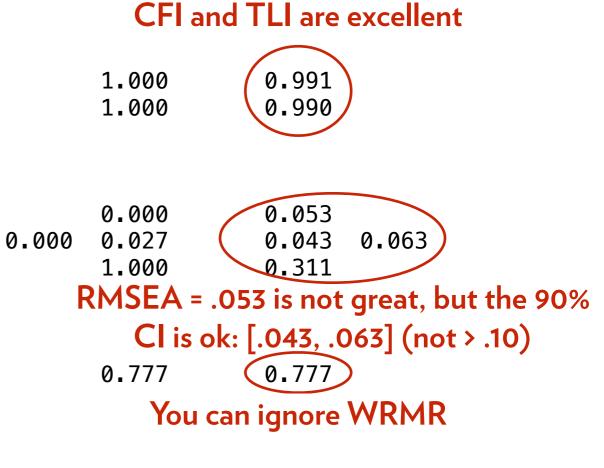
Output (model fit): lavaan (0.5–17) converged normally after 38 Number of observations	Model shows significant misfit, ^{it} Chi-square / df is good: 286 / 164 = 1.76	, but
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor Shift parameter for simple second-order correction (Mplus	DWLS 162.211 164 0.525 0.000 0.755 71.330 s variant) Robust 286.057 164 0.000 0.755 71.330	
Model test baseline model:		
Minimum Function Test Statistic Degrees of freedom P–value	46290.833 190 0.000 0.000 14383.462 190 0.000 0.000	
	This tests if the model is bette than the worst possible model (unsurprisingly, it is)	_

Output (model fit, continued):

User model versus baseline model:

Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)

Root Mean Square Error of Approximation:


RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05

Weighted Root Mean Square Residual:

WRMR

Parameter estimates:

Information Standard Errors

Expected Robust.sem

Specify and run your CFA

Alter the model until all remaining items fit Make sure you have at least 3 items per factor!

Report final loadings, factor fit, and model fit

We conducted a CFA and examined the validity and reliability scores of the constructs measured in our study.

Upon inspection of the CFA model, we removed items c5 (communality: 0.180) and u1 (communality: 0.324), as well as item u3 (high cross-loadings with several other factors). The remaining items shared at least 48% of their variance with their designated construct.

To ensure the convergent validity of constructs, we examined the average variance extracted (AVE) of each construct. The AVEs were all higher than the recommended value of 0.50, indicating adequate convergent validity.

To ensure discriminant validity, we ascertained that the square root of the AVE for each construct was higher than the correlations of the construct with other constructs.

Summary

Construct	Item	Loading			
System	I would recommend TasteWeights to others.	0.888			
satisfaction	TasteWeights is useless.	-0.885			
	TasteWeights makes me more aware of my choice options.	0.768			
Alpha: 0.92	I can make better music choices with TasteWeights.				
AVE: 0.709	I can find better music using TasteWeights.	0.889			
	Using TasteWeights is a pleasant experience.	0.786			
	TasteWeights has no real benefit for me.	-0.845			
Perceived	I liked the artists/bands recommended by the TasteWeights				
Recommendation	system.				
Quality	The recommended artists/bands fitted my preference.	0.950			
	The recommended artists/bands were well chosen.	0.942			
Alpha: 0.90	The recommended artists/bands were relevant.				
AVE: 0.737	TasteWeights recommended too many bad artists/bands.	-0.697			
	I didn't like any of the recommended artists/bands.	-0.775			
Perceived	I had limited control over the way TasteWeights made	0.700			
<u>Control</u>	recommendations.				
	TasteWeights restricted me in my choice of music.	0.859			
Alpha: 0.84	Compared to how I normally get recommendations,	0.911			
AVE: 0.643	TasteWeights was very limited.				
	I would like to have more control over the recommendations.	0.716			
	I decided which information was used for recommendations.				
<u>Understandability</u>	The recommendation process is not transparent.				
	I understand how TasteWeights came up with the	0.893			
Alpha: 0.92	recommendations.				
AVE: 0.874	TasteWeights explained the reasoning behind the				
	recommendations.				
	I am unsure how the recommendations were generated.	-0.923			
	The recommendation process is clear to me.	0.987			

	Alpha	AVE	Satisfaction	Quality	Control	Underst.
Satisfaction	0.92	0.709	0.842	0.687	-0.762	0.336
Quality	0.90	0.737	0.687	0.859	-0.646	0.282
Control	0.84	0.643	-0.762	-0.646	0.802	-0.341
Underst.	0.92	0.874	0.336	0.282	-0.341	0.935

diagonal: $\sqrt{(AVE)}$

off-diagonal: correlations

s3 and s4 are more highly correlated, so:

```
emodel <- 'satisf =~ s1+s2+s5+s6+s7</pre>
```

```
choice =\sim s3+s4
```

```
quality = q1+q2+q3+q4+q5+q6
```

```
control =\sim c1+c2+c3+c4+c5
```

```
underst =~ u1+u2+u3+u4+u5'
```

Run cfa:

efit <- cfa(emodel, data=twq, ordered=names(twq), std.lv=T)</pre>

Inspect model output:

```
summary(efit, rsquare=TRUE, fit.measures=TRUE)
```


Satisfaction: AVE = 0.744, $\sqrt{(AVE)}$ = 0.863

Choice satisfaction: AVE = 0.782, $\sqrt{(AVE)}$ = 0.884

Correlation between them = 0.889

Conclusion: no discriminant validity!

s3 and s4 are more highly correlated, so:

fmodel <- 'satisf =~ s1+s2+s3+s4+s5+s6+s7
quality =~ q1+q2+q3+q4+q5+q6
control =~ c1+c2+c3+c4+c5
underst =~ u1+u2+u3+u4+u5
s3 ~~ s4'</pre>

Run cfa and inspect output:

```
ffit <- cfa(emodel, data=twq, ordered=names(twq), std.lv=T)
summary(ffit, rsquare=TRUE, fit.measures=TRUE)</pre>
```

"It is the mark of a truly intelligent person to be moved by statistics."

George Bernard Shaw